Review of the Methods for Handling Missing Data in Longitudinal Data Analysis
نویسندگان
چکیده
Even in well-controlled situations, missing data always occur in longitudinal data analysis. Missing data may degrade the performance of confidence intervals, reduce statistical power and bias parameter estimate. In this paper, we review and discuss general approaches for handling miss data in longitudinal studies. We first illustrate the mechanism of missing data. Then we focus on the methods for handling missing values in longitudinal data analysis. In the end, we summarize and discuss the characteristics of each method. Mathematical Subject Classification: 62J10, 62J12, 62-07
منابع مشابه
A Comparative Review of Selection Models in Longitudinal Continuous Response Data with Dropout
Missing values occur in studies of various disciplines such as social sciences, medicine, and economics. The missing mechanism in these studies should be investigated more carefully. In this article, some models, proposed in the literature on longitudinal data with dropout are reviewed and compared. In an applied example it is shown that the selection model of Hausman and Wise (1979, Econometri...
متن کاملکاربرد جای گذاری چندگانه در تحقیقات پزشکی و اپیدمیولوژی
Data missing, which occurs for different reasons, is an unavoidable problem in epidemiological studies. It is quite widespread and, therefore, it is considered as a challenge in research design and data analysis by many methodologists. Complete case analysis is often used in studies with missing data however, this approach may result in inaccurate estimates and inferences due to bias associated...
متن کاملچند رویکرد برخورد با مقادیر گمشده متغیرهای کمی و بررسی اثر آنها بر نتایج حاصل از یک کارآزمایی بالینی
Background and Objectives: A major challenge that affects the longitudinal studies is the problem of missing data. Missing in the data may result in the loss of part of the information which reduces the accuracy of the estimator and obtain the results will be biased and inaccurate. Therefore, it is necessary to evaluate the missing data mechanism from a longitudinal research and to consider thi...
متن کاملA review of the handling of missing longitudinal outcome data in clinical trials
The aim of this review was to establish the frequency with which trials take into account missingness, and to discover what methods trialists use for adjustment in randomised controlled trials with longitudinal measurements. Failing to address the problems that can arise from missing outcome data can result in misleading conclusions. Missing data should be addressed as a means of a sensitivity ...
متن کاملInvestigating the missing data effect on credit scoring rule based models: The case of an Iranian bank
Credit risk management is a process in which banks estimate probability of default (PD) for each loan applicant. Data sets of previous loan applicants are built by gathering their data, and these internal data sets are usually completed using external credit bureau’s data and finally used for estimating PD in banks. There is also a continuous interest for bank to use rule based classifiers to b...
متن کامل